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Abstract—A hitherto unavailable analytical solution to the boundary-value problem of free
vibration of an anti-symmetric angle-ply laminated sheur-flexible doubly curved shell of rectangular
planform is presented. A novel solution methodology. based on a boundary-continuous double
Fourier series approach, is developed to solve the eigenvalue problems, involving five highly coupled
linear partial differential equations with constant coetlicients, resulting from Sanders’ FSDT (first-
order shear-deformation theory)-based formulation that also includes surface-parallel and rotatory
inertias. Numerical results presented in this study exhibit, for the first time. a mode switch of
numerically ordered frequencies from transverse to surface-parallel modes with the change of
such geometric and material parameters as length-to-thickness ratio, radius-to-thickness ratio and
Limination angle. Additionally, these results have been utilized to validate the accuracy of available
CLT-based approximate solutions, computed using the Galerkin approach.

[. INTRODUCTION

Itis well established that analysis of laminated curved panels fabricated with such advanced
composite materials as graphite/cpoxy, boron/epoxy, graphite/PEEK ctc.. are complex due
to their inherent in-plane anisotropy and asymmetry of lamination, resulting in various
coupling eflfects, e.g. bending stretching coupling, first studied by Ambartsumyan (1953).
Additional complexities arise because of transverse shear deformation, caused by low
transverse shear modulus-to-in-pliane Young's modulus ratio and efTect of boundary con-
straints.

Stavsky and Lowey (1971), Jones and Morgan (1975) and Greenberg and Stavsky
(1980) have all obtained exact solutions {in the sense that an infinite set of lincar algebraic
equations can be truncated to any desired degree of accuracy, according to Chia (1977);
see also Chaudhuri and Abu-Arja (1991)] for the vibration and buckling problems of thin
cross-ply cylindrical shells. Soldatos and Tzivanidis (1982) have presented exact solutions
to the vibration and buckling problems of cross-ply cylindrical panels. Jones and Morgan
(1975) and Soldatos and Tzivanidis (1982) have used Donnell’s kinematic relations, while
Stavsky and Lowey (1971) and Greenberg and Stavsky (1980) have utilized a Love-type
theory. Dong et al. (1962) have also developed a theory of anisotropic thin shells, employing
Donnell’s shell theory, and presented results for cross-ply laminates. All of the afore-
mentioned exact solutions for thin shells (based on Kirchhoff-Love’s hypothesis where
transverse shear deformations are neglected) are limited to: (1) cylindrical geometry,
(2) cross-ply laminations, and (3) special boundary conditions termed SS3 [under the
classification of Hoff and Rehfield (1965), which will be used in this paper henceforth).
Utilizing the approximate Galerkin approach, Soldatos (1982) has obtained solutions to
the free vibration problems of anti-symmetric angle-ply thin cylindrical panels with §S2
boundary conditions.

Gulati and Essenberg (1967), and Zukas and Vinson (1971) have studied the effects
of transverse shear deformation on the response of complete cylindrical shells, by intro-
ducing the first-order shear deformation theory (FSDT), based on the so-called Mindlin
hypothesis. Dong and Tso (1972) have developed a FSDT-based theory for cross-ply shells
and prescnted exact solutions for free vibration of complete cylindrical shells. Sinha and
Rath (1976) have obtained exact solutions for transversely loaded circular cylindrical panels
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by incorporating the FSDT into Donnell’s kinematic relations. Using four tracers to handle
four popular shell theories due to. namelv—Sanders (1959). Love, Morley (1959) and
Donnell —Hsu et af. (1981) and Bert and Kumaur (1982) have obtained FSDT-based exact
solutions to thermal stress and vibration problems. respectively, of bimodulus cross-ply
complete cylindrical shells and panels. Reddy (1984) has used Sanders® (1959) kinematic
relations and the FSDT for solving the problems of bending and vibration of shear-flexible
doubly curved panels. While he has been able to obtain exact solutions to the problems of
cross-ply doubly curved panels with SS3-type simply supported boundary conditions.
wherein the displacement functions have been expanded into double Fourier series, his
attermpt at obtaining an exact solution to the problem of anti-symmetric angle-ply doubly
curved shells with SS2-type boundary conditions has not been crowned with success. because
of his ending up with 10 sets of linear algebraic equations in five sets of unknowns, leading
to his conclusion that ""unlike plates, anti-symmetric angle-ply laminated shells with simply
supported boundary conditions do not admit exact solutions™. The central issue here is the
well-posedness of the Fourier formulation. introduced through a Navier-type approach.
The first objective of the present study is to devise a method that will ensure the well-
posedness of the formulation, so that the number of equations becomes equal to the number
of unknown Fourier cocfficients to furnish a unique complete solution. Study of the effects
of various geometric and material parameters on the computed natural frequencies of such
laminated panels, which are extremely important design considerations, will comprise the
sccond objective of this investigation. Furthermore, a literature search reveals that the effect
of surface-parallel inertia terms, resulting in mode switch with the geometric and material
parameters, is yet to be investigated, which will form the third objective of this paper. In
addition, numerical results thus obtained will be compared to the available CLT-based
results, computed using the approximate Galerkin approach due to Soldatos (1982), which
will form the final objective of the present study.

2. STATEMENT OF THE PROBLEM

Figure 1 shows a luminated doubly curved panel (open shell) of rectangular planform,
of total thickness /i. v, and x, represent the directions of the lines of curvature of the middle
surfuce, while the x,-axis is a straight linc perpendiculur to the middle surface. R, (i = 1,2)
denotes the principal radii of curvature of the middle surface. The following set of simplify-
ing assumptions is considered : (i) first-order shear deformation theory (FSDT) ; (i1) shallow
shell approximation—A/ R, hj Ry << 1 (iii) trunsverse inextensibility ; and (iv) neglect of
the geodesic curvature.

The displacement fields, based on the above hypotheses, are:

Fig. 1. A doubly curved pancl.
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=(l+xy R +x3¢,; i=1.2: uy=u, (1)

in which «; (i = 1.2, 3) represents the components of displacement at a point x, (i = 1.2.3):
and v, denotes the same for the corresponding point at the midsurface. The strain dis~
placement relations of a doubly curved shell are (Reddy, 1984):
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in which ¢, and ¢ arc the rotations of the reference surface (at x, = 0) about the v, and
£,y co-ordinate axes, respectively. The equations of motion, based on Sunders™ (1959) shell
theory, can be written as:
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where p™*” and V represent the density of the layer material and the total number of layers,
respectively. V. V.. N, are the surface-parallel stress resultants, while M, M,, M, are
moment resultants (stress couples), and Q, and Q, are the transverse shear-stress resultants,
all per unit fength. For an anti-symmetric angle-ply laminate,

ﬂ'”,:/‘:f,:f‘,;j:B”=B|2=822=BM,=D”,=D:6=0. (6)

The stress and moment resultants are then defined <
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in which A4,,. B, and D, (i.j = 1, 2,6) denote the extensional, flexural-extensional coupling,
and flexural rigiditics, while A,,. i, j = 4,5, are the transverse shear rigidities (Jones, 1975).
Ki and K3 are the shear correction fuctors.

Substitution of eqns (7) into egns (5) yields the following five highly coupled second-
order partial differential equations
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S$S2-type simply supported boundary conditions are given by

, =1, =¢, =M, =N, =0, atthcedgesx, =constant; n=172

(8e)

&)

where nand ¢ denote the normal and tangential directions to anedgeand whenn =11 =2

and vice versa,

3. THE SOLUTION TECHNIQUE

Reddy (1984) has sought to solve the boundary-value problem, represented by egns

(8). (9), by assuming the displacement functions in the following form:
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(10)

with T = ¢*” for free vibration, while a,, and f, are equal to mn/a and nnjb, respectively.
The above assumed displacement functions (10) completely satisfy the geometric and
natural boundary conditions as stipulated in egns (9) in a manner similar to Navier's
approach. Hence, these functions are expected to be well behaved in the vicinity of an edge
and their substitution into the differential equations should pose no difficulty (Hobson,
1926). By the introduction of eqns (10) into e.g. eqn (8a), Reddy (1984) has obtained

equations similar to
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Constants G(i. j) ii=1,....5:j=1...., 18 are as presented in eqns (A1) of the Appendix.

On setting the cocfficients of sin (2,,.x,) cos (f,x;) and cos (z,,.v,) sin (f,x.). ineqn (11). to
zero, Reddy (1984) has obtained two scts of linear algebraic equations. Using the same
approach, the remaining four equations of eqns (8) furnish a further eight sets of lincar
algebraie equations, finally, yiclding, in total, 10mn equations in Smn unknowns, for
mon=1273...., which has prompted Reddy (1984) to conclude that “unlike plates, anti-
symmetric angle-ply laminated shells with simply supported boundary conditions do not
admit exact solutions™.

The first step in alleviating the difficulty, encountered by Navier's approach employed
by Reddy (1984), comprises assuming that the displacement functions are in a form identical
to eyns (10), except that the lower limits of the cosine series include the m or n = 0 terms,
which appeur to have been excluded in Reddy’s (1984) assumed solutions. Substitution of
these modified displacement functions into the eqns (8a), (8e) will yield :
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for i=1,5 and O0<ux, <a; O0<x,<h (13)

The next and more important step is to expand the cos (x,,.v,) sin (f,x;) and cos (ff,x.)
functions in the form of Fouricr serics, as suggested by Green and Hearmon (1945) as
follows:

cos (%,,x,) sin (B,x,) = Z Z Mhgsin(y,x)cos(@.x:) O<x,<a; O<x,<bh (14a)
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and
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4
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Substituting the series expansions (14) into eqn (13} and equating to zero the coefficients
of sin (x,,x;) cos (f,v.) and sin(x,,.x,) then furnishes, after a rearrangement,
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in which i = 1,5, while G, and C/ (i=1,.... 5) are as defined by eqns (A2) and (A3),

respectively, in the Appendix.

The last step has eliminated the ditticulty encountered by Navier's approach employed
by Reddy (1984) to solve the problem under consideration. One can now obtain, setting
i= 1.5 into the egns (16}, (17}, two scts of lincar algebraic equations corresponding to
equations {8a}, (8c). Similur operations on the remaining equations of eqns (8) will supply
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and
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Finally, for the free vibration problem under investigation, the above procedure has yielded
a Smn+2m+ 2n eigensystem (homogeneous linear algebraic equations in terms of as many
unknowns). in which case the Fourier coefficients need not be determined explicitly. The
eigenvalues and eigenvectors are computed by calling the software IMSL as a subroutine.
The convergence characteristics of the Fourier series solution, which is an important issue
in the case of static deformation problem. has been investigated by Kabir and Chaudhuri
(1991) for the case of clamped cross-ply plate. Extension of the same to the case of a
laminated doubly curved panel, the details of which are available in Kabir (1990), will be
published in a follow-up paper.

4. RESULTS AND DISCUSSIONS

The following two examples—(i) cylindrical and (ii) spherical panels of square
planform, which are special cases of doubly curved panels —will serve to illustrate the
validity of the analytical procedure of the preceding section. Two examples of anti-sym-
metric angle-ply lamination —(0/ =) and (/= 0/0] - 0) —will be considered. Material
propertics are assumed identical to those of Soldatos (1982) :

EJE, =30 G.JE:=050: G.JE,=G,/JEs=06; v, =025

wherein £, and £, are the Young's moduli in the directions parallel and transverse to the
fibers, respectively. Gy, is the surface-parallel shear modulus, while ¢, and G, are the
transverse shear moduli and vy, is the major Poisson’s ratio. The shear correction factors
considered, Ki = K3 = 5/6, are fairly standard. Normalized frequencies are defined as

0, = w,uk/p/ﬂ/h for i=1,2,.... (21)

Example (i) : Cylindrical panels of square planform

This example is selected for the purpose of verifying the convergence and also because
CLT-based numerical results due to Soldatos (1982), computed using the approximate
Galerkin’s procedure, are available.

Table | shows the convergence of the fundamental frequency, w, which corresponds
to the mode shape wuy, . of a relatively flat (R/a = 92.1403) and moderately-thick

Table . Comparison of convergence of the normalized
fundamental frequency of a 45 /—45  cylindrical

puanclt
n=m Soldatos (1982) Present solution
1 27.120 27.019
2 26.354 27.262
3 26.298 27.375
4 26.171 27.420
5 26.166 27415
6 — 27.430
7 — 27.440

YEGE, =40, G E, =G JE; =05 G.JE, =
0.6:v,, =025 Ru=921403a = h.
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240
Cylindrical Panel
a=b; R/a = 5.73;
200 ah=20 1
0/-0 =45/-45
14.32 Cylindrical Panel 40 160 u
azb; Rax573;ah=20 3(2.2)
0/-8 = 45/4S5
14.30 120
U1y
14.28 80
a,
1426 40
14.24 0.0
t 2 3 4 5 6
n=m n=m
(a) ()]

Fig. 2. Convergence of normalized (a) first and second, (b) third and fourth numerically ordered
frequencies.

(aifr = 20) 45 / —45" cylindrical pancl. Soldatos (1982). in his CLT-based study. has shown
convergence up to m,n =5, while up to m,n = 7 terms have been included in the present
FSDT-based convergence study. Rapid convergence has been observed here, with results
duc to m = n =1 being within less than 1.5% (crror) of the converged solution due to
m = n = 7. The approximate solution due to Soldatos (1982) is in close agreement with the
present solution, the minor difference between the two solutions being attributable to
Soldatos’ use of the CLT and Galerkin's approach. The convergence of the first four
natural frequencies is illustrated in Figs 2(a), (b) for a moderately-deep (R/a = 5.73)
and moderately-thick (a/h = 20) 457/ -45 pancl. Rapid convergence of the fundamental
frequency for the latter-type panel confirms the same trend, demonstrated by Table |, in
the case of the former. The sume trend continues for the second, third and fourth natural
frequencies, wherein m = n = 2 terms appear to be adequate for numerical convergence,
which renders the present analytical procedure also numerically efficient. Variation of the
fundamental frequencies (w,), for moderately-thick (a/h = 20) and thick («¢/h = §) anti-
symmetric angle-ply moderately-deep (R/a = 5.73) pancls, as functions of lamination angle,
0. are presented in Figs 3(a) and 3(b), respectively. Each case considers two laminations—
two-layer (0/—0) and four-luyer (0/—60/0/—0). In the case of the thick four-layer
(0 —0/0] — 0y angle-ply pancl, with a/ir = 5, the maximum frequency is found to occur at
a 0 in the neighborhood of 60 ', the minimum being at 0 = 0°. For a/h = 20 [Fig. 3(a)]. w,
assumes its maximum and minimum values at 0 =90 and 0 = 0 , respectively. The two-
layer anti-symmetric angle-ply panel assumes its minimum w, near & = |5 | the maximum
being at 0 =90 for both the thickness ranges—a/h =S and 20. Figure 4 shows the
fundamental frequencies, w,, of two-layer (0/ — ) and four-layer (0/ — 0/0] — 0) moderately-
thick (a/h = 20) and deep (R/a = 1.30) panels as functions of the lamination angle, 0. The
maximum frequency in both the cases occurs near 0 = 82, while minimum values are
assumed at different angles of lamination, with those for the two-layer and four-layer panels
being close to 5" and at 20", respectively. It is interesting to observe that for 0 > 80°
(approximate) a mode switch occurs, with the result that the fundamental frequency now
corresponds to a surface-parallel mode, u,(, ). instead of the usual transverse mode. u;, ;.

Example (if) : Spherical panels of square planform
The second example considered is that of the simplest type of doubly curved panels,
i.e. a spherical panel (wherein the geodesic curvature has been neglected), with the purpose

SAS 28:1-C
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40

Cylindrical Panel
a=zb;Ra=573;ah=20
30

0-80/-8 1

Uyn

8/-9
10
0 15 3 45 60 75 90
Lamination Angle ©
(a)
Yy
12
- a/h=5
wl
9/-9/6/-9
1|
Uyn
10
Cylindrical Panel
a=b;R/a=573;ah=5
9 .
0 15 30 45 60 75 90
Lamination angle 8

(b)
Fig. Y. Variation of normalized fundamental frequency with limination angle for (i) moderately-

thick and (b) thick. moderately-deep evlindrical pancls,

of investigating the influence of the lamination angle, 0, curvature and thickness on the
natural frequencies,

Figures 5(a) and 5(b) cxhibit the vanation of the fundamental frequency, @, with
respect to the lamination angle, #, tor moderately-thick (a/h

= 20) and thick (a/h = 5)
panels, respectively, with R/a = 5.73. In contrast to its cylindrical panel counterparts (Figs

Cylindrical Panel

T

A - . ~ "‘.
%0 a=b; R/a = 1.30; a/h = 20 b
YW

\‘\

== Y 3
80 4

- Ua.n

0 15 30

45 60 75

90
Lamination angle 8

Fig. 4. Variation of the normalized fundamental frequency with lamination angle of moderately-
thick deep cylindrical panels.
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2
0-0/8-8."
\ Spherical Panel A
28 ‘\ as= b; Ra=573;ah=20 ,/
: /
\'\ /'/.

88 T Tuan
o 15 30 45 60 75 90

Lamination Angle 8
(a)

gl

26

9/-0/6/—8

1y

Spherical Panel
a=b;R/a=573;ah=z=5

10 " N
0 15 30 a5 60 75 90

Lamination anqle 6
()]

Fig. 5. Variation of normalized fundamental frequency with lanunation angle for (a) moderately-
thick and (b) thick, moderately-deep sphenical pancls.

3a. 3b). symmetry about 0 =45 of these plots (Figs 5a. Sb) is sclf-evident, Two-layer
f)) — 6, moderately-thick (a/h = 20) pancls attain maximam vailues at 0 and 90 | while four-
layer, 8/ —0/0] =0, moderately-thick (@/hr = 20) and both types of thick (¢'h = 5) pancls
assume their maximum fundamental frequency values at 0 = 45 . Minimum values of ),
for a 00/ — 0 pancl with afh = 5, occur close to 0 = 10 and 80 ', while their moderately-thick
{a;hr = 20) counterparts assume their minima at 21 and 69 . In the case of four-layer
(0/ = 0;0/ = 0) pancls, these minima oceur at 0 and 90 |, regardless of the shell thickness
under consideration.

The influence of the curvature on the first four natural frequencies of moderately-thick
(«’h = 10) two-layer (45 /—45") and four-layer (45°/—45 /45 —45') panels is shown in
Figs 6 and 7. The plot of w, versus R/u (Fig. 6) demonstrates that for both 45/ —45" and

2 Spherical Panel
az=b; ashz10
20 U
L 45/-45/45/-45
18 -
[0V)
1
16 Uy
14
—— —]
45/-45
12 .
0.0 10 20 30 40 108

R/a

Fig. 6. Varniation of the normalized fundamental frequency with R/e ratio. for moderately-thick
spherical panels.
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Fig. 7. Varnation of the normalizd higher numerically-ordered frequencies with R « ratio for
modcrately-thick spherical panels.
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Fig. 8. Vartation of normalized fundamental frequency with o/ ratio for moderately-deep spherical
panels,
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Fig. 9. Variation of normalized sccond and third numerically ordered frequencies with « 4 ratio tor
maoderately-deep spherical panels.
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Fig. 10. Vartation of the normalized fourth numerically ordered frequency with a/f ratio for
moderately-deep spherical pancls.
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Fig. 11. Variation of normalized funduamental frequency with a/h ratio for very shallow spherical
panels.

45/ —45/45 [/ —45" laminates, the effect of shell curvature on ), is not noticeable for
R/« 2 30 approximately. In the case of 457/ —45 " laminates, w, and w,, which correspond
to the uy, 5 and u;, , modes, respectively, are almost identical (Fig. 7). This trend is also
obscrved in the case of w; and w, of 45/ —457/45"/ —45" laminates, which correspond to
the uyy.2) and uy2,, modes, respectively. Further, it is interesting to observe a switch to a
surface-parallel mode, u,(, ,, which corresponds to the numerical frequencies, wy, for
45 /—45 and w; of 45'/—-45°/45°/—45’ laminates, which incidentally assume almost
identical values for all R/« ratios.

The effect of thickness on the first four natural frequencies of two-layer, 45’/ —45",
and four-layer, 457/ —45°/45'/ — 45", moderately-deep panels (R/a = 5) is presented in Figs
8-10. Figure 9 exhibits a switch from out-of-plane or transverse mode, uy, ). to a surface-
parallel mode. u,(, ,,. in the case of the second (numerical) natural frequency, w,, for both
45 /—45° and 45°/—-45°/45°/ —45" laminates. Figure 9 also shows that w, and w, of
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Fig. 12. Varation of normalized second and third numerically ordered frequencies with a i ratio
for very shallow spherical panels.
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Fig. 13. Variation of the normalized tourth numerically ordered frequency with a:h ratio for very
shallow spherical panels,

45'/-45" merge together for a/h > 10 (approximately), while w, and w; of
45'/—45'/45’/—45" does the sume for o/ 2 20. Figurc 10 shows the variation of the
fourth numerical frequency, w,, with respect to the afh ratio, for both 45°/—45" and
45 /—45°/45°—45" laminates, wherein a switch of mode with the change in thickness is
self-evident. Similar trends arc also observed in the case of flatter panels (Figs 11-13). These
plots further demonstrate that for relatively flat pancls, nondimensionalized frequencies,
@, as expected. tend to become independent of the increase of «/h ratio, with the lower
frequencies attaining this status faster than the higher onces.

5. CONCLUSIONS

A heretofore unavailable analytical solution to the problem of free vibration of a finite-
dimensional anti-symmetric angle-ply shear-flexible doubly curved shell of rectangular
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planform is presented. Sanders’ kinematic relations, extended to include the first-order shear
deformation through the laminate thicknesss, and surface-parallel and rotatory inertias,
are utilized in the formulation. A novel solution methodology. based on a boundary-
continuous double Fourier series approach, is developed to solve the eigenvalue problems,
involving five highly coupled linear partial differential equations with constant coefficients,
previously thought to be incapable of admitting an “‘exact™ solution. Numerical results
presented here demonstrate fast convergence. and also testify to the accuracy and efficiency
of the method developed. Furthermore, these results exhibit. for the first time, a mode
switch of numerically ordered trequencies from transverse to surface-parallel modes with
the change of such geometric and material parameters as the length-to-thickness ratio,
radius-to-thickness ratio and lamination angle, which has profound implications for the
role of these parameters on the tuilure modes of the type of composite panels under
investigation. In addition. these results have been utilized to validate the accuracy of
available CLT-based solutions. computed by using the approximate Galerkin approach.
These solutions should serve as baselines for future comparison of results, obtained by such
popular approximate numerical methods as finite elements and finite difference.
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APPENDIX

The non-zero constants, G(i, j) with i = 1-5and j = 118, are as given below:
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